
Commitfest item:

4971

Stop worrying about indexing huge tables!
Our snapshot-resetting technique and optimized
STIR-based validation phase dramatically reduce
indexing time and ensure that VACUUM processes
run effectively.

Build your indexes confidently,
no matter how large the table.
Choose smarter indexing today.

•Up to 3× faster concurrent index
builds!
•The xmin horizon advances the whole
index build duration!
•Robust and efficient—no shortcuts,
bulletproof classic snapshots only!
•Stress-tests included!

Mikhail Nikalayeu

Overview

This patch dramatically improves concurrent index build (CIC/RIC) speed, while allowing xmin
horizon advancement, reducing vacuum interference. The mission is to bring back the PG14
feature introduced in d9d0762 and reverted in e28bb88.

Optimization of First Phase: Snapshot Reset

• Snapshots are periodically reset “between” pages to GetLatestSnapshot() during the
heap scan of the first phase.

• For unique indexes the special handling ensures uniqueness constraints remain intact by
checking liveness with SnapshotSelf during _bt_load in case of equal values coming in a
row.

Optimization of Second Phase: STIR
Goal of the second phase is to add entries which were inserted into the table during the first
phase. Currently it is done by a second scan of the whole table and comparison of the index
TIDs with heap TIDs.

Short Term Index Replacement is a special lightweight auxiliary structure – it serves a single mission –
capture all the new TIDs inserted into the heap during the first phase. As a result, we need to
compare index TIDs only with TIDs captured by STIR! It gives up to 3× performance boost!

The STIR itself:
• AM with the same columns, predicates and expressions as a target index
• Always unlogged
• Does not support any queries
• Simply appends new incoming TIDs to its pages
• Since it does not store any indexed data – it is not even prepared during insert
• Automatically dropped if it becomes junk due to errors

Additionally, we are safe to reset snapshots during the new validation phase – we are just
operating with root TIDs, so — any snapshot is fine! We just need to
WaitForOlderSnapshots of the newest one before marking index as valid.

0

200

400

600

800

1000

1200

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

59
5

62
8

66
1

69
4

72
7

76
0

79
3

82
6

85
9

89
2

92
5

TP
S

(h
ig

he
r i

s
be

tt
er

)

time, s (shorter is better)

Performance of concurrent transactions

HEAD PATCHED

0

50000

100000

150000

200000

250000

300000

350000

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

51
1

54
5

57
9

61
3

64
7

68
1

71
5

74
9

78
3

81
7

85
1

88
5O

ld
es

t x
m

in
ag

e
(le

ss
 is

be
tt

er
)

time, s (shorter is better)

xmin horizon advance

HEAD PATCHED

Benchmark shows
2× faster index
build time, same
performance of
concurrent
transactions,
effective xmin
horizon advance

• pgbench scale

2000
• io2 AWS

storage
• 8 concurrent

pgbench
clients

CREATE UNIQUE
INDEX
CONCURRENTLY idx
ON
pgbench_accounts
(aid)

373 309
493

1350 2520
381 450

124 78
246

1224 2187
133 150

Index build time, disk 1ms delay,
less is better

HEAD PATCHED

110
80

112 506 2356
97 115

67
13

63
458 2292

55 70

Index build time, local SSD,
less is better

HEAD PATCHED

Benchmark shows faster index build time for different cases
• pgbench scale 2000
• Two types of storage – high-end local SSD or 1ms delay SSD
• 8 concurrent pgbench clients
abalance
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts (abalance)
brin
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts USING brin(abalance)
gin
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts using gin(abalance)
gist
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts using gist(abalance)
hash
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts USING hash(bid)
unique
CREATE UNIQUE INDEX CONCURRENTLY idx ON pgbench_accounts (aid)
unique_hot (causes a lot new TIDs coming each update)
CREATE INDEX hot ON pgbench_accounts (abalance)
CREATE UNIQUE INDEX CONCURRENTLY idx ON pgbench_accounts (aid)

