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Stop worrying about indexing huge tables! 
Our snapshot-resetting technique and optimized 
STIR-based validation phase dramatically reduce 
indexing time and ensure that VACUUM processes 
run effectively. 

Build your indexes confidently, 
no matter how large the table.
Choose smarter indexing today.

•Up to 3× faster concurrent index 
builds!
•The xmin horizon advances the whole
index build duration!
•Robust and efficient—no shortcuts, 
bulletproof classic snapshots only!
•Stress-tests included!

Mikhail Nikalayeu

Overview 

This patch dramatically improves concurrent index build (CIC/RIC) speed, while allowing xmin 
horizon advancement, reducing vacuum interference. The mission is to bring back the PG14 
feature introduced in d9d0762 and reverted in e28bb88. 

Optimization of First Phase: Snapshot Reset 

• Snapshots are periodically reset “between” pages to GetLatestSnapshot() during the 
heap scan of the first phase. 

• For unique indexes the special handling ensures uniqueness constraints remain intact by 
checking liveness with SnapshotSelf during _bt_load in case of equal values coming in a 
row. 

Optimization of Second Phase: STIR 
Goal of the second phase is to add entries which were inserted into the table during the first 
phase. Currently it is done by a second scan of the whole table and comparison of the index 
TIDs with heap TIDs. 
 
Short Term Index Replacement is a special lightweight auxiliary structure – it serves a single mission – 
capture all the new TIDs inserted into the heap during the first phase. As a result, we need to 
compare index TIDs only with TIDs captured by STIR! It gives up to 3× performance boost! 
 
The STIR itself: 
• AM with the same columns, predicates and expressions as a target index 
• Always unlogged 
• Does not support any queries 
• Simply appends new incoming TIDs to its pages 
• Since it does not store any indexed data – it is not even prepared during insert 
• Automatically dropped if it becomes junk due to errors 

 
Additionally, we are safe to reset snapshots during the new validation phase – we are just 
operating with root TIDs, so — any snapshot is fine! We just need to 
WaitForOlderSnapshots  of the newest one before marking index as valid.  
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Performance of concurrent transactions
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xmin horizon advance
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Benchmark shows 
2× faster index 
build time, same 
performance of 
concurrent 
transactions, 
effective xmin 
horizon advance 
 
• pgbench scale 

2000 
• io2 AWS 

storage 
• 8 concurrent 

pgbench 
clients 

 
CREATE UNIQUE 
INDEX 
CONCURRENTLY idx 
ON 
pgbench_accounts 
(aid) 
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Index build time, disk 1ms delay, 
less is better
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Benchmark shows faster index build time for different cases 
• pgbench scale 2000 
• Two types of storage – high-end local SSD or 1ms delay SSD 
• 8 concurrent pgbench clients 
abalance 
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts (abalance) 
brin 
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts USING brin(abalance) 
gin 
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts using gin(abalance) 
gist 
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts using gist(abalance) 
hash 
CREATE INDEX CONCURRENTLY idx ON pgbench_accounts USING hash(bid) 
unique 
CREATE UNIQUE INDEX CONCURRENTLY idx ON pgbench_accounts (aid) 
unique_hot (causes a lot new TIDs coming each update) 
CREATE INDEX hot ON pgbench_accounts (abalance) 
CREATE UNIQUE INDEX CONCURRENTLY idx ON pgbench_accounts (aid) 
 


