pg_mooncake v0.2 &

Cheng Chen, Nolan Biscaro, Hao Jiang, Zhou Sun, Pranav Aurora

What does fast analytics need?

Process data in small batches rather than row-by-row.
Columnar storage + Vectorized Execution

- CPU cache utilization

- SIMD acceleration

- Compute on encoded data

- Minimize function calling overhead

id symbol time price

>/ 70500740

N

SELECT symbol, count(*) FROM trades
GROUP BY 1 ORDER BY 2 DESC;

OLAP

SELECT * FROM trades WHERE id=123;

OLTP

Why analytics in Postgres?

| want to run analytic queries on my Postgres tables.

Step 1: Columnar copy of my Postgres tables (unsolved)

Foreign Data Wrappers (Clickhouse)
F append + batch writes only

Native Columnstore Tables in Postgres (Timescale)
= slower analytics queries

Step 2: Use Postgres to query columnar data efficiently (solved)

Foreign Data Wrappers (Clickhouse)
/£ Compute running on external engine

DuckDB in Postgres (pg_duckdb)

/& Compute running on embedded engine

pg_mooncake’s goal

Run fast analytics queries on ‘up-to-date’ Postgres tables:

1. Create a columnar copy that’s always synced with changing OLTP tables
a. <s freshness.

2. Fast queries + Postgres idiomatic
a. Joins with rowstore tables + support for types/triggers etc

3. Modern columnstore based on Iceberg
a. Snapshots readable by external engines

Architecture

Backend Processes Backgrouno(Process
replication ® Mooncake
oLTP —
Arrow
J/ periodic Flusk
______________________ .
' I
' |
! I
| Index '
' !
' | i 2
| | per\oo(‘c
| merge
I Iceberg : 7
Analk/tucs : Parquet P. quet "
)
union read : |
|
|
< | Pai quet P, quet |
' |
' |
'L Object St I

“Real-time” Columnar Storage Engine in Postgres.
Great support for point INSERT/UPDATE/DELETE

Columnstore Queries Executed by embedded DuckDB.
Fast joins between Columnstore & Rowstore

Replication from OLTP tables into Columnstore Tables
Sub-second freshness with OLTP tables
Deployable as a read replica

Top 10 Clickbench Perf (Jan 14)

All 16 vCPU128GB 8 vCPU 64GB serverless 16acu cb6a.4xlarge, 500gbgp2 L M S XS c6a.metal, 500gbgp2 192GB 24GB 360GB
708GB c5n.4xlarge, 500gb gp2 Analytics-256GB (64 vCores, 256 GB) c5.4xlarge, 500gb gp2 c6a.4xlarge, 1500gb gp2

Machine:

Cluster size:

Metric:

48GB 720GB 96GB dev

cloud dc2.8xlarge
16 vCPU 64GB 4 vCPU 16GB 8 vCPU 32GB

All 1 2 4 8 16 32 64 128 serverless

Cold Run

Hot Run

ra3.16xlarge

Load Time

ra3.4xlarge

Storage Size

System & Machine

ra3.xlplus

S2 S24 2XL 3XL 4XL XL L1-16CPU32GB c6a.4xlarge, 500gb gp3

undefined

Relative time (lower is better)

x1.46
x2.57
x2.77
x2.80
x2.91
x3.34
x3.48
x3.51
x4,71

x5,78

x6.10
x6.49
x6.63
x7.03

fastest Postgres OLAP solution + fastest parquet based system

: extension for fast analytics on ‘up-to-date’ tables

mooncake

@
(\APGConf.dev‘25

mooncake write path

Foreground

Append new rows to row buffer
Append deletes to delete buffer

Use index to identify delete position

Background

Flush Parquet and deletion vectors
Flush Iceberg snapshots
Compaction

Update index accordingly

uﬂ&lﬂ()F?

objec‘t store

row buffer delete buffer
(1Ol ':") p 4 - 1
P
(11, k" (2, 2)
N
(12, 1

/
index /
pk -> (file id, row offset) /
/

T1:. BEGIN
T1: INSERT (10, i)
T1: INSERT (11, 'k')

T2: BEGIN

T2: DELETE 11
T2: DELETE ¢

T2: INSERT (12, '
T2: COMMIT

]

/

(11 '“')
(2, '6")
(34 ’C')
(4, 'd)

(6, ')

o) ||
C]

mooncake read path

- Read-committed

- Eventual consistency (<s freshness)

- Snapshot every 0.5s in the background

- Read waits until its snapshot LSN has

processed

we’d love your support &

pg_mooncake (MIT License)

¢« v0.2 in preview end May ‘25

] founders@mooncake.dev

I

&3 mooncake.dev

disk + object store

MMMMM

scan_table(t, snapshot)

row buffer

delete buffer

0, 1)
(1, %)

(12,1

(11 '“’)
(2, %)
(31'C3
(CACY)

______._______T_________._.__——-l

mailto:founders@mooncake.dev

