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What does fast analytics need?

Process data in small batches rather than row-by-row.
Columnar storage + Vectorized Execution

- CPU cache utilization

- SIMD acceleration

- Compute on encoded data

- Minimize function calling overhead
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SELECT symbol, count(*) FROM trades
GROUP BY 1 ORDER BY 2 DESC;

OLAP

SELECT * FROM trades WHERE id=123;

OLTP

Why analytics in Postgres?

| want to run analytic queries on my Postgres tables.

Step 1: Columnar copy of my Postgres tables (unsolved)

Foreign Data Wrappers (Clickhouse)
F append + batch writes only

Native Columnstore Tables in Postgres (Timescale)
= slower analytics queries

Step 2: Use Postgres to query columnar data efficiently (solved)

Foreign Data Wrappers (Clickhouse)
/£ Compute running on external engine

DuckDB in Postgres (pg_duckdb)

/& Compute running on embedded engine

pg_mooncake’s goal

Run fast analytics queries on ‘up-to-date’ Postgres tables:

1. Create a columnar copy that’s always synced with changing OLTP tables
a. <s freshness.

2. Fast queries + Postgres idiomatic
a. Joins with rowstore tables + support for types/triggers etc

3. Modern columnstore based on Iceberg
a. Snapshots readable by external engines
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“Real-time” Columnar Storage Engine in Postgres.
Great support for point INSERT/UPDATE/DELETE

Columnstore Queries Executed by embedded DuckDB.
Fast joins between Columnstore & Rowstore

Replication from OLTP tables into Columnstore Tables
Sub-second freshness with OLTP tables
Deployable as a read replica

Top 10 Clickbench Perf (Jan 14)
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fastest Postgres OLAP solution + fastest parquet based system

: extension for fast analytics on ‘up-to-date’ tables
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mooncake write path

Foreground

Append new rows to row buffer
Append deletes to delete buffer

Use index to identify delete position

Background

Flush Parquet and deletion vectors
Flush Iceberg snapshots
Compaction

Update index accordingly
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mooncake read path

- Read-committed

- Eventual consistency (<s freshness)

- Snapshot every 0.5s in the background

- Read waits until its snapshot LSN has

processed

we’d love your support &

pg_mooncake (MIT License)
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disk + object store
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scan_table(t, snapshot)

row buffer

delete buffer
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