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Materialized View:
● The results of the view definition query 
are stored in the database.

● Requires maintenance when base tables are 
modified.

● REFRESH MATERIALIZED VIEW re-computes the 
materialized view contents using the 
latest table state.

Incremental View Maintenance (IVM):
● Only the incremental changes to the view 
are computed and applied.
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(2) Table R is modified

(3) Calculate the changes in the view
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(4) Update the view by applying the changes

Proposed Patch: Adds support for materialized 
views that are updated automatically and 
incrementally when base tables change.
test=# CREATE INCREMENTAL MATERIALIZED VIEW mv_ivm AS
        SELECT aid, bid, abalance, bbalance
        FROM pgbench_accounts JOIN pgbench_branches USING (bid)
        WHERE abalance > 0 OR bbalance > 0;

test=# UPDATE pgbench_accounts SET abalance = 1000 WHERE aid = 1;
UPDATE 1
Time: 18.634 ms
test=# SELECT * FROM mv_ivm WHERE aid = 1;
 aid | bid | abalance | bbalance 
-----+-----+----------+----------
   1 |   1 |     1000 |       10
(1 row)

Takes 18 ms to update vs 10 seconds using 
REFRESH (pgbench scale factor 100)

Design:
● AFTER triggers are automatically created on 
base tables.

● Uses Transition Tables to extract changes.
● Rewrites view definition queries and executes 
them to calculate incremental view changes.
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Open questions:
1. Trigger-based Design: Should we avoid relying 

on triggers like declarative partitioning?
2. Features Scope: Exclude aggregate, DISTINCT, 

and tuple duplicate supports in the first 
release to simplify the patch and improve its 
reviewability?

3. Hidden Columns: How should they be handled?
4. Pre-update State of Table: Need infrastructure 

to scan a table using a specified snapshot, 
instead of using the crafted sub-query?

5. Syntax: “CREATE INCREMENTAL MATERIALIZED VIEW” 
is tentative. Is "CREATE MATERIALIZED VIEW … 
WITH (reloptions)" preferable?.

6. Other issues: EXPLAIN outputs, CONTEXT in an 
error message, etc.

Simultaneous Multiple Tables Modification:
● Multiple tables could be modified in a 
statement. (ex. foreign key constraint, CTE)

● Self-join shares the same situation
(Tables appearing in a query repeatedly ≒   
 Different tables with the same contents)

● Requires both pre- and post-update states of 
tables.

View definition　　　  V  R  S≝ ⋈
Tables modifications　  R _new =  R_old  ∆R,  S_new = S_old  ∆S∪ ∪
Incremental change　  ∆V = (∆R  S_old)  (R_new  ∆S)⋈ ∪ ⋈

● Pre-update state of a table is reconstructed 
using:

 SELECT… FROM tbl
  WHERE ivm_visible_in_prestate(t.tableoid, t.ctid, matview_oid)
 UNION ALL SELECT … FROM deleted_tuples_from_tbl;

● ivm_visible_in_prestate function returns 
true if a row is visible with a snapshot  
before the table modification acquired in 
the BEFORE trigger.

Maintenance of View with DISTINCT
● A hidden column _ivm_count_ tracks row 
multiplicity.

● Row is deleted from view when count reaches 
zero.

Duplicate Tuples in View
● The multiplicity of each tuple in the 
incremental view changes is determined using 
count(*).

● For deletion, tuples are deleted according 
to their specified multiplicity using the 
row_number() window function.

● For insertion, tuples are duplicated to 
match specified multiplicity using the 
generate_series() function. 

Aggregate Support
● Supports built-in count, sum, avg, min, and max.
● More than one hidden column is created per 
aggregate.

pg_ivm:
● An extension module version of IVM 
implementation

● Supports more complex views (sub-queries, CTEs.)
● Includes fixes not yet applied to the patch but 
to be.

More design review and community discussion 
are needed.

Commitfest item: pg_ivm:


	Compression of big WAL records (path to wholesale WAL compressi

