
Incremental View Maintenance
A Fast Method for Updating Materialized Views

 Yugo Nagata
nagata@sraoss.co.jp

Materialized View:
● The results of the view definition query
are stored in the database.

● Requires maintenance when base tables are
modified.

● REFRESH MATERIALIZED VIEW re-computes the
materialized view contents using the
latest table state.

Incremental View Maintenance (IVM):
● Only the incremental changes to the view
are computed and applied.

number english

1 one

2 two

3 three

number roman

1 I

2 II

3 III

R S

number english roman

1 one I

2 two II

3 three III

V ≝ R ⋈ S natural
join

(1) View definition

number english

1 one → ONE

2 two

3 three

number roman

1 I

2 II

3 III

R ← (R − ∇R ∪ ∆R) S

number english roman

1 one I

∇V = ∇R ⋈ Snatural
join

number english

1 one

number english

1 ONE

∇R
∆R

number english roman

1 ONE I

∆V = ∆R ⋈ S
natural
join

(2) Table R is modified

(3) Calculate the changes in the view

number english roman

1 one I

∇V
number english roman

1 ONE I

∆V

number english roman

1 one → ONE I

2 two II

3 three III

V ← (V − ∇V ∪ ∆V)delete insert

(4) Update the view by applying the changes

Proposed Patch: Adds support for materialized
views that are updated automatically and
incrementally when base tables change.
test=# CREATE INCREMENTAL MATERIALIZED VIEW mv_ivm AS
 SELECT aid, bid, abalance, bbalance
 FROM pgbench_accounts JOIN pgbench_branches USING (bid)
 WHERE abalance > 0 OR bbalance > 0;

test=# UPDATE pgbench_accounts SET abalance = 1000 WHERE aid = 1;
UPDATE 1
Time: 18.634 ms
test=# SELECT * FROM mv_ivm WHERE aid = 1;
 aid | bid | abalance | bbalance
-----+-----+----------+----------
 1 | 1 | 1000 | 10
(1 row)

Takes 18 ms to update vs 10 seconds using
REFRESH (pgbench scale factor 100)

Design:
● AFTER triggers are automatically created on
base tables.

● Uses Transition Tables to extract changes.
● Rewrites view definition queries and executes
them to calculate incremental view changes.

Base talbesTables

Materialized View
（IMMV)

Delta
tables

Delta
tables

Delta
tables

Changes
in Tables

ビュー差分
（一次差分）View Definition

Query
Apply

Changes
in the view

Modification

Extract
R, S ∇R, ΔR, ∇S, ΔS

∇V, ΔV V

AFTER triggers
 & Transition Tables

Rewrite the view definition
query and execute it

Execute SQL internally

Compute

SELECT ... FROM R, S WHERE ...

SELECT ... FROM new_table_R, S WHERE ...

modified table

Transition Table (rows inserted into R)

View Definition Query

After Rewritten

→ The results are ”rows to be inserted into the view”.

rewrite

2025

Open questions:
1. Trigger-based Design: Should we avoid relying

on triggers like declarative partitioning?
2. Features Scope: Exclude aggregate, DISTINCT,

and tuple duplicate supports in the first
release to simplify the patch and improve its
reviewability?

3. Hidden Columns: How should they be handled?
4. Pre-update State of Table: Need infrastructure

to scan a table using a specified snapshot,
instead of using the crafted sub-query?

5. Syntax: “CREATE INCREMENTAL MATERIALIZED VIEW”
is tentative. Is "CREATE MATERIALIZED VIEW …
WITH (reloptions)" preferable?.

6. Other issues: EXPLAIN outputs, CONTEXT in an
error message, etc.

Simultaneous Multiple Tables Modification:
● Multiple tables could be modified in a
statement. (ex. foreign key constraint, CTE)

● Self-join shares the same situation
(Tables appearing in a query repeatedly ≒
 Different tables with the same contents)

● Requires both pre- and post-update states of
tables.

View definition　　　 V R S≝ ⋈
Tables modifications　 R _new = R_old ∆R, S_new = S_old ∆S∪ ∪
Incremental change　 ∆V = (∆R S_old) (R_new ∆S)⋈ ∪ ⋈

● Pre-update state of a table is reconstructed
using:

 SELECT… FROM tbl
 WHERE ivm_visible_in_prestate(t.tableoid, t.ctid, matview_oid)
 UNION ALL SELECT … FROM deleted_tuples_from_tbl;

● ivm_visible_in_prestate function returns
true if a row is visible with a snapshot
before the table modification acquired in
the BEFORE trigger.

Maintenance of View with DISTINCT
● A hidden column _ivm_count_ tracks row
multiplicity.

● Row is deleted from view when count reaches
zero.

Duplicate Tuples in View
● The multiplicity of each tuple in the
incremental view changes is determined using
count(*).

● For deletion, tuples are deleted according
to their specified multiplicity using the
row_number() window function.

● For insertion, tuples are duplicated to
match specified multiplicity using the
generate_series() function.

Aggregate Support
● Supports built-in count, sum, avg, min, and max.
● More than one hidden column is created per
aggregate.

pg_ivm:
● An extension module version of IVM
implementation

● Supports more complex views (sub-queries, CTEs.)
● Includes fixes not yet applied to the patch but
to be.

More design review and community discussion
are needed.

Commitfest item: pg_ivm:

	Compression of big WAL records (path to wholesale WAL compressi

