Incremental View Maintenance
A Fast Method for Updating Materialized Views

Yugo Nagata
nagata@sraoss.co.]p

Materialized View:

* The results of the view definition query
are stored in the database.

* Requires maintenance when base tables are
modified.

* REFRESH MATERIALIZED VIEW re-computes the
materialized view contents using the
latest table state.

Incremental View Maintenance (IVM):
* Only the incremental changes to the view
are computed and applied.

(1) View definition (2) Table R is modified

R S R« (R- VRUAR) S
number english number ~ roman number english number roma
1 one 1 1 1 one - ONE 1 I
2 two 2 1I 2 two 2 I
3 three 3 11 3 three 3 11
(3) Calculate the changes in the view
ur \\\\EW“ VR VV=VRwS
V = R X S number english number english roman
number english ~ roman 1 one 1 one I
: ene : AR AV =ARw S
2 twi II numbe glish j!106:nur:=1 number english roman
3 three 11T 1 ONE — » 1 ONE I
(4) Update the view by applying the changes
VA% AV

number english ~ roman
1 one I 1 ONE I

delete

Ve (V-VVUAV) ™u &
number english ~ roman
1 one -~ ONE I
2 two 11
3 three 11

(\dpGconf.dev 2025

Proposed Patch: Adds support for materialized
views that are updated automatically and

incrementally when base tables change.

test=# CREATE INCREMENTAL MATERIALIZED VIEW mv_1ivm AS
SELECT aid, bid, abalance, bbalance
FROM pgbench_accounts JOIN pgbench branches USING (bid)
WHERE abalance > 0 OR bbalance > 0;

test=# UPDATE pgbench_accounts SET abalance = 1000 WHERE aid = 1;
UPDATE 1
Time: 18.634 ms
test=# SELECT * FROM mv_1ivm WHERE aid = 1;
aild | bid | abalance | bbalance

----- Y I I
1 | 1 | 1000 | 10 Takes 18 ms to update vs 10 seconds using
(1 row) REFRESH (pgbench scale factor 100)
Design:

* AFTER triggers are automatically created on
base tables.

* Uses Transition Tables to extract changes.

* Rewrites view definition queries and executes
them to calculate incremental view changes.

AFTER triggers

Modification & Transition Tables

R, S v

Z
Tables

Changes
SELECT ... FROM R, S WHERE ... in Tables
. Compute
After Rewritten rewrite Rewrite the view definition
guery and execute it

SELECT ... FROM new_table_R, S WHERE ... o
View Definition nthevew | VYV, AV
/~View Definition ™

N Queryr e Apply

Materialized View [
(IMMV)

VR, AR,
VS, AS

View Definition Query modified table

!

Transition Table (rows inserted into R) \%

- The results are "rows to be inserted into the view”.

Execute SQL internally

Simultaneous Multiple Tables Modification:
* Multiple tables could be modified in a

statement. (ex. foreign key constraint, CTE)
* Self-join shares the same situation
(Tables appearing in a query repeatedly =
Different tables with the same contents)
* Requires both pre- and post-update states of
tables.

VERNXS
R new= R oldUAR, S new=S old UAS
AV = (AR M S_old) u (R_new X AS)

View definition
Tables modifications
Incremental change

* Pre-update state of a table is reconstructed
using:

SELECT.. FROM tbl
WHERE ivm visible in prestate(t.tableoid, t.ctid, matview oid)
UNION ALL SELECT .. FROM deleted tuples from tbl;

* ivm visible in prestate function returns
true if a row is visible with a snapshot
before the table modification acquired in
the BEFORE trigger.

Duplicate Tuples in View
* The multiplicity of each tuple in the

incremental view changes is determined using
count(*).

* For deletion, tuples are deleted according
to their specified multiplicity using the
row number() window function.

* For insertion, tuples are duplicated to
match specified multiplicity using the
generate series() function.

Commitfest item:

Maintenance of View with DISTINCT
* A hidden column 1ivm count tracks row
multiplicity.
* Row 1s deleted from view when count reaches
Zero.

Aggregate Support
* Supports built-in count, sum, avg, min, and max.

* More than one hidden column is created per
aggregate.

pg_ivm:
* An extension module version of IVM
implementation
* Supports more complex views (sub-queries, CTEs.)
* Includes fixes not yet applied to the patch but
to be.

Open questions:
1. Trigger-based Design: Should we avoid relying

on triggers like declarative partitioning?

2. Features Scope: Exclude aggregate, DISTINCT,
and tuple duplicate supports in the first
release to simplify the patch and improve 1its
reviewability?

. Hidden Columns: How should they be handled?

4. Pre-update State of Table: Need infrastructure
to scan a table using a specified snapshot,
instead of using the crafted sub-query?

5. Syntax: “CREATE INCREMENTAL MATERIALIZED VIEW”
is tentative. Is "CREATE MATERIALIZED VIEW ..
WITH (reloptions)" preferable?.

6. Other issues: EXPLAIN outputs, CONTEXT in an
error message, etc.

w

More design review and community discussion
are needed.

	Compression of big WAL records (path to wholesale WAL compressi

